### 26<sup>th</sup> World Gas Conference

#### 1 – 5 June 2015 – Paris, France



#### **TS.WOC 1 1**

A Study on Hydraulic Fracture Geometry using Macro-Scale Physical Simulation in Marine Shale Haifeng Fu

China National Petroleum Corporation



A Study on Hydraulic Fracture Geometry using Macro-Scale Physical Simulation in Marine Shale

# OUTLINE







### **Opportunities in Shale Gas Industry**

- seismic technology
- horizontal well drilling
- multi-stage hydraulic fracturing





\*EIA AEO 2011

- Challenge in China Shale Gas Stimulation
  - More complex geological conditions
  - Fracturing mechanism unclear.
  - □ Fracturing design method immature.



The Purpose of Physical Simulation

□ The effect of geological & pumping

conditions on SRV

□ Trying to solve three key questions









- Physical simulation is an effective way
- Observe HF geometry
  □ Single/Multiple/ fracture
- Test new fracturing process
  Massive fracturing
  Hybrid fracturing
- Modify acoustic location
  - □ Tensile/shear events



sandstone



Linestone



Fibre fracturing



Acoustic monitoring 5

#### • Large-scale test for hydraulic fracturing is useful.

| Research Institute                  | Sample<br>Dimension | Injection<br>Pressure | Post-evaluation Method                   |
|-------------------------------------|---------------------|-----------------------|------------------------------------------|
| China University of<br>Petroleumn   | 300mm               | 20MPa                 | Manual Splitting                         |
| Delft University of<br>Technology   | 350mm               | 35MPa                 | Active Accoustic Monitoring              |
| University of<br>California,Berkely | 450mm               | 60MPa                 | Manual Splitting                         |
| TerraTek Company                    | 914mm               | 69MPa                 | Manual Splitting                         |
| CNPC                                | 914mm               | 69MPa                 | Passive Acoustic Monitoring<br>Real-time |





A Study on Hydraulic Fracture Geometry using Macro-Scale Physical Simulation in Marine Shale

# OUTLINE

### **Technology of Natural Block Preparation.**

### **Diamond Line-saw Cutting**

• Sample standard dimension:

762(length) × 762(width) × 914mm(height)

- Larger block should be cut
- Shale is easy to crush due to brittleness



- Smaller block should be cemented
- Difference of mechanical property
- Numerical simulation of stress distribution









#### **Technology of Hydraulic Fracturing Experiment.**

### Large Block Test System for Hydraulic Fracturing

#### **Structure Diagram**



#### Technical Parameters

- Maximum Loading pressure: 10000psi
- Maximum stress difference: 2000psi
- Maximum borehole diameter: 4.9in
- Maximum injection pressure 12000psi
- Maximum injection rate: 12L/min
- Acoustic monitoring : 24 channels

### Large Block Test System for Hydraulic Fracturing

#### **Areas of Investigation**

- Fracture Initiation
- Fracture Containment
- Fracture Complexity
- Acoustic monitoring
- Perforation
- Shale Completion



sandstone



Linestone







Acoustic monitoring

10

#### Technology of Passive Acoustic Monitoring.

### To describe fracture propagation in real-time

- Sensors at different sites.
- Signals emitted by fracturing are
  - located.
- Signals at the same time can
  - reflect fracture geometry.



A Study on Hydraulic Fracture Geometry using Macro-Scale Physical Simulation in Marine Shale

# OUTLINE



1. Basic data

#### I type shale



- Higher clay content;
- Weathering;
- Easy to be crushed;



II type shale

- Lower clay content;
- > Tight ;
- Cut without damage;

#### **Total rock x-ray diffraction analysis and Clay mineral**

|              | Clay mineral relative content<br>(%) |          |       |           |           |      | Total rock quantitative (%) |                           |                 |             |              |              |
|--------------|--------------------------------------|----------|-------|-----------|-----------|------|-----------------------------|---------------------------|-----------------|-------------|--------------|--------------|
| Rock<br>type | к                                    | С        | Ι     | I/S       | %S        |      | Quart<br>Z                  | Potassiu<br>m<br>feldspar | Plagio<br>clase | Calci<br>te | Dolomi<br>te | Chromi<br>te |
| Ι            | 5                                    | 20       | 36    | 39        | 10        | 44   | 28                          | 1                         | 7               | 9           | 9            | 2            |
| Π            |                                      | 8        | 85    | 7         | 5         | 12   | 52                          |                           | 1               | 20          | 14           | 1            |
| Tips         | K: ka                                | olinite, | C:chl | orite, I: | illite, S | :sme | ctite, I/S: il              | lite/smectit              | te interla      | yer, %S     | : interlay   | er ratio     |

### 2. Results.

#### Summary of test conditions and results

| Test<br>number | Rock<br>type | ⊡σ <sub>v,H,h</sub><br>(MPa) | K <sub>h</sub> | Viscosity<br>(cP) | Pump<br>rate(cm <sup>3</sup> /s) | P <sub>net</sub> ,D | Fracture geometry                                |
|----------------|--------------|------------------------------|----------------|-------------------|----------------------------------|---------------------|--------------------------------------------------|
| 1              | Ι            | 24,24,1<br>0                 | 1.<br>4        | 5                 | 8.33                             | 0.21                | Complex, many nature fractures dilated           |
| 2              | Ι            | 13,13,1<br>0                 | 0.<br>3        | 5                 | 166.67                           | 0                   | Simple, one fracture connected one discontinuity |
| 3              | Π            | 13,13,1<br>0                 | 0.<br>3        | 5                 | 67                               | 3.02                | Complex, three nature fractures dilated          |
| 4              | Π            | 13,13,1<br>0                 | 0.             | all               | the cor                          | nditi               | ons lex, one fracture connected<br>re fractures  |
| 5              | Π            | 24,24,1<br>0                 | 4              | are t             | ne sam<br>in fie                 | e as<br>Id          | e fracture connected                             |
| 6              | Π            | 24,24,1<br>0                 | 1.<br>4        | 150               | 8.33                             | 0.39                | Simple, only one hydraulic fracture              |

**Note:** Horizontal stress difference

 $K_h = (\sigma_H - \sigma_h) / \sigma_h$ 

**Dimensionless net pressure** 

$$p_{net,D} = \frac{p_{net}}{\sigma_H - \sigma_h}$$







The existing and pattern of natural fractures determine hydraulic fracture geometry.

- More natural fractures, More complicated
- Higher injection pressure, More tortuosity



| Test<br>number | Rock<br>type | ⊡σ <sub>v,H,h</sub> (MPa) | K <sub>h</sub> | Viscosity<br>(cP) | Pump<br>rate(cm <sup>3</sup> /s) | P <sub>net<sup>y</sup>D</sub> |
|----------------|--------------|---------------------------|----------------|-------------------|----------------------------------|-------------------------------|
| 1              | Ι            | 24,24,10                  | 1.4            | 5                 | 8.33                             | 0.21                          |
| 5              | Π            | 24,24,10                  | 1.4            | 5                 | 8.33                             | 0.12                          |

Case 2

Lower horizontal stress difference and fluid viscosity, More complex geometry, as test 3 and test 6 showed.



| Test<br>number | ⊡σ <sub>v,H,h</sub> (MPa) | Viscosity<br>(cP) | Pump rate(cm <sup>3</sup> /s) | P <sub>net</sub> ,D |
|----------------|---------------------------|-------------------|-------------------------------|---------------------|
| 3              | 13,13,10                  | 5                 | 166.67                        | 3.02                |
| 6              | 24,24,10                  | 150               | 8.33                          | 0.39                |

Case 2

- Test4 and test5 show less complex fracture geometry can exist in some cases.
- It is difficult to produce complex fracture geometry with higher viscous fluid.



| Test<br>number | ⊡σV,H,h (MPa) | Viscosity<br>(cP) | Pump rate(cm3/s) | Pnet,D |
|----------------|---------------|-------------------|------------------|--------|
| 4              | 13,13,10      | 150               | 1                | 3.6    |
| 5              | 24,24,10      | 5                 | 8.33             | 0.12   |

Case 2



$$p_{net,D} = \frac{p_{net}}{\sigma_H - \sigma_h}$$

Case 3

### Application of Acoustic Monitoring in Lab



- Attenuation and anisotropy lead to locate acoustic event badly.
- Advanced locating needs to be improved in future.

Case 3

#### Rock failure mechanism analysis



- the tensile rupture is dominated in tight sandstone.
- the proportion of shear events is the largest in coal.
- Shear event or slippage is also usual in shale.

### Conclusion

- **Large-scale physical simulation is an effective way to research.**
- More complex fracture with natural fractures、high net pressure 、low

stress difference and fluid viscosity.

Acoustic events corresponding to complex fracture will be investigated.





### **Thanks for your attention!**



#### Acknowledgement

- Thanks to our company CNPC for supporting us on this paper.
- Thanks to my working team for their great job.

#### **Contact Information**

- •Name: Haifeng Fu
- •Tel: 86-10-69213794
- E-mail: fuhf69@petrochina.com.cn